$\mu = 0.24 \text{ mm}^{-1}$ T = 120 (2) K

 $R_{\rm int} = 0.025$

 $0.50 \times 0.41 \times 0.25 \text{ mm}$

11932 measured reflections

3329 independent reflections 2954 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(2-Nitrophenyl)-3-pivaloylthiourea

Aamer Saeed^a* and Ulrich Flörke^b

^aDepartment of Chemistry, Quaid-i-Azam University Islamabad, Pakistan, and ^bDepartment Chemie, Fakultät für Naturwissenschaften, Universität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany Correspondence e-mail: aamersaeed@yahoo.com

Received 15 August 2007; accepted 18 September 2007

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.104; data-to-parameter ratio = 19.4.

In the structure of the title compound, C₁₂H₁₅N₃O₃S, the thioamide and amide groups are almost coplanar with the benzene ring. The planes of the NO₂ group and the benzene ring form a dihedral angle of 40.8 (2)°. The crystal packing shows intermolecular $N-H \cdots S$ hydrogen bonds, forming centrosymmetric dimers which are stacked along [001].

Related literature

For related literature, see: Saeed & Flörke (2006, 2007).

Experimental

Crystal data

$C_{12}H_{15}N_3O_3S$	a = 10.8491 (14) Å
$M_r = 281.33$	b = 11.8882 (16) Å
Monoclinic, $P2_1/c$	c = 11.1206 (15) Å

$\beta = 103.723 \ (3)^{\circ}$
$V = 1393.4 (3) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min} = 0.890, \ T_{\max} = 0.933$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ 172 parameters $wR(F^2) = 0.104$ H-atom parameters constrained S = 1.05 $\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 3329 reflections

Table 1	
Hydrogen-bond geomet	ry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2 - H2A \cdots O1$	0.88	1.90	2.5953 (16)	134
$N1 - H1A \cdot \cdot \cdot S1^{1}$	0.88	2.59	3.4614 (12)	171
$C4 - H4B \cdot \cdot \cdot S1^{i}$	0.98	2.75	3.6486 (18)	153
$C5-H5C\cdots S1^{i}$	0.98	2.84	3.7121 (18)	149

Symmetry code: (i) -x + 2, -y, -z + 2.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

AS gratefully acknowledges a research grant from the Quaid-i-Azam University Islamabad.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2060).

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Saeed, A. & Flörke, U. (2006). Acta Cryst. E62, o2924-o2925.

Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o1390-o1392.

supplementary materials

Acta Cryst. (2007). E63, o4259 [doi:10.1107/S160053680704593X]

1-(2-Nitrophenyl)-3-pivaloylthiourea

A. Saeed and U. Flörke

Comment

The coplanarity of thioamide and amide groups with the phenyl ring are reflected by the torsion angles C6–N1–C1–O1 of $-6.1 (2)^{\circ}$ and C8–N2–C6–N2 of $1.4 (2)^{\circ}$. This is a common feature for this type of compounds (Saeed & Flörke, 2006) as well as the intermolecular N–H···S hydrogen bonds (Table 2, Fig. 2), forming centrosymmetric dimers which are stacked along [001]. Two intermolecular C–H···S interactions with somewhat longer H···S distances are also present (see the hydrogen bonding table). Additionally, the typical (Saeed & Flörke, 2006) intramolecular N–H···O hydrogen bond is formed with the carbonyl function.

Experimental

A solution of freshly distilled pivaloyl chloride (1.20 g, 10 mmol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (0.97 g,10 mmol) in acetone (30 ml) and the reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 3-methoxyaniline (10 mmol) in acetone (10 ml) was added and the resulting mixture refluxed for 2.0 h. The reaction mixture was poured into cold water and the resulting precipitate was isolated by filtration followed by recrystallization from ethanol to afford the title thiourea compound as colourless crystals (2.33 g, 83.0 mmol, 83%). m.p. 352 K. IR (KBr) cm⁻¹: 3351 (free NH), 3200 (assoc. NH), 1667 (CO), 1610 (arom.), 1529, 1325, 1160, 744, 762; ¹H NMR (CDCl₃) 1.27 (9*H*, s, pivaloyl), 3.89 (3*H*, s, ArOCH₃), 7.31–7.75 (aromatic), 9.19 (1*H*, s, broad, NH); 12.76 (1*H*, s, broad, NH); EIMS m/e: 281, 283, 149, 119, 91, 64.9; Analysis calculated for $C_{12}H_{15}N_3O_3S$ C, 51.23; H, 5.37; N, 14.94; S, 11.40 found C, 64.01; H, 5.32; N, 9..10; O, S, 10.65.

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the C (C–H = 0.95–0.99 Å) or N (N–H = 0.88 Å) atoms with isotropic displacement parameters $U_{iso}(H) = 1.2U(C_{eq} / N_{eq})$ and 1.5(methyl-C). Methyl H atoms were refined on the basis of rigid groups allowed to rotate but not tip.

Figures

Fig. 1. Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing viewed along [001] with the intra- and N–H…S intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

1-(2-Nitrophenyl)-3-pivaloylthiourea

Crystal data
$C_{12}H_{15}N_3O_3S$
$M_r = 281.33$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 10.8491 (14) Å
<i>b</i> = 11.8882 (16) Å
<i>c</i> = 11.1206 (15) Å
$\beta = 103.723 \ (3)^{\circ}$
$V = 1393.4 (3) \text{ Å}^3$
Z = 4

Data collection

3329 independent reflections
2954 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
$\theta_{\text{max}} = 27.9^{\circ}$
$\theta_{\min} = 1.9^{\circ}$
$h = -14 \rightarrow 12$
$k = -15 \rightarrow 15$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.104$	$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.5774P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3329 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.20 \ e \ {\rm \AA}^{-3}$

 $F_{000} = 592$

 $\theta = 2.5 - 28.2^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 120 (2) KBlock, yellow

 $D_{\rm x} = 1.341 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $0.50 \times 0.41 \times 0.25 \text{ mm}$

Cell parameters from 981 reflections

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.99549 (3)	0.16750 (3)	0.98065 (4)	0.02415 (12)
01	0.57778 (10)	0.08899 (9)	0.84219 (10)	0.0276 (2)
O2	0.76929 (17)	0.45204 (15)	1.14489 (13)	0.0606 (4)
O3	0.63077 (16)	0.34998 (13)	1.02002 (15)	0.0545 (4)
N1	0.78505 (11)	0.04492 (9)	0.92321 (10)	0.0190 (2)
H1A	0.8365	-0.0104	0.9549	0.023*
N2	0.76148 (11)	0.23423 (10)	0.87778 (11)	0.0215 (2)
H2A	0.6795	0.2209	0.8544	0.026*
N3	0.72498 (15)	0.40959 (12)	1.04339 (13)	0.0347 (3)
C1	0.65778 (13)	0.01695 (12)	0.87845 (12)	0.0195 (3)
C2	0.62599 (13)	-0.10813 (12)	0.87869 (13)	0.0221 (3)
C3	0.48233 (15)	-0.12139 (14)	0.83176 (17)	0.0346 (4)
H3A	0.4394	-0.0816	0.8874	0.052*
H3B	0.4601	-0.2014	0.8296	0.052*
H3C	0.4555	-0.0897	0.7483	0.052*
C4	0.66637 (15)	-0.15607 (13)	1.01035 (14)	0.0264 (3)
H4A	0.6226	-0.1153	1.0646	0.040*
H4B	0.7583	-0.1475	1.0413	0.040*
H4C	0.6440	-0.2360	1.0092	0.040*
C5	0.69320 (16)	-0.17063 (13)	0.79120 (15)	0.0307 (3)
H5A	0.6660	-0.1391	0.7077	0.046*
H5B	0.6711	-0.2507	0.7892	0.046*
H5C	0.7852	-0.1620	0.8210	0.046*
C6	0.83936 (13)	0.14998 (11)	0.92322 (12)	0.0181 (3)
C7	0.80631 (13)	0.34525 (11)	0.86576 (13)	0.0205 (3)
C8	0.86926 (14)	0.36909 (12)	0.77407 (14)	0.0248 (3)
H8A	0.8819	0.3113	0.7192	0.030*
С9	0.91413 (15)	0.47677 (13)	0.76166 (14)	0.0278 (3)
H9A	0.9563	0.4926	0.6978	0.033*
C10	0.89742 (15)	0.56134 (13)	0.84252 (15)	0.0303 (3)
H10A	0.9281	0.6350	0.8336	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C11	0.83692 (16)	0.53913 (13)	0.93514 (15)	0.0298 (3)
H11A	0.8270	0.5964	0.9917	0.036*
C12	0.79046 (14)	0.43159 (12)	0.94491 (13)	0.0236 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01774 (18)	0.01579 (18)	0.0359 (2)	-0.00065 (12)	0.00039 (14)	0.00073 (13)
01	0.0191 (5)	0.0235 (5)	0.0392 (6)	0.0015 (4)	0.0049 (4)	0.0041 (4)
02	0.0804 (12)	0.0730 (11)	0.0350 (7)	-0.0148 (9)	0.0270 (7)	-0.0147 (7)
03	0.0623 (10)	0.0499 (8)	0.0642 (10)	-0.0193 (7)	0.0408 (8)	-0.0105 (7)
N1	0.0188 (5)	0.0144 (5)	0.0227 (6)	0.0003 (4)	0.0026 (4)	0.0016 (4)
N2	0.0180 (5)	0.0168 (6)	0.0286 (6)	0.0003 (4)	0.0035 (5)	0.0026 (4)
N3	0.0458 (9)	0.0285 (7)	0.0348 (7)	-0.0016 (6)	0.0194 (6)	-0.0027 (6)
C1	0.0194 (6)	0.0208 (6)	0.0186 (6)	-0.0017 (5)	0.0048 (5)	-0.0001 (5)
C2	0.0210 (7)	0.0191 (7)	0.0245 (7)	-0.0039 (5)	0.0022 (5)	0.0002 (5)
C3	0.0248 (8)	0.0289 (8)	0.0443 (9)	-0.0091 (6)	-0.0034 (7)	0.0035 (7)
C4	0.0259 (7)	0.0250 (7)	0.0280 (7)	-0.0023 (5)	0.0057 (6)	0.0055 (6)
C5	0.0396 (9)	0.0231 (7)	0.0287 (8)	-0.0025 (6)	0.0066 (6)	-0.0062 (6)
C6	0.0201 (6)	0.0168 (6)	0.0176 (6)	-0.0004 (5)	0.0053 (5)	-0.0007 (5)
C7	0.0190 (6)	0.0171 (6)	0.0234 (7)	0.0019 (5)	0.0012 (5)	0.0031 (5)
C8	0.0271 (7)	0.0223 (7)	0.0249 (7)	0.0014 (6)	0.0057 (6)	0.0008 (6)
С9	0.0286 (8)	0.0278 (7)	0.0278 (7)	-0.0008 (6)	0.0082 (6)	0.0067 (6)
C10	0.0340 (8)	0.0190 (7)	0.0361 (8)	-0.0040 (6)	0.0049 (6)	0.0060 (6)
C11	0.0363 (8)	0.0192 (7)	0.0334 (8)	0.0002 (6)	0.0073 (6)	-0.0026 (6)
C12	0.0256 (7)	0.0216 (7)	0.0236 (7)	0.0010 (5)	0.0059 (5)	0.0018 (5)

Geometric parameters (Å, °)

S1—C6	1.6754 (14)	С3—НЗС	0.9800
O1—C1	1.2180 (17)	C4—H4A	0.9800
O2—N3	1.226 (2)	C4—H4B	0.9800
O3—N3	1.220 (2)	C4—H4C	0.9800
N1—C6	1.3809 (17)	С5—Н5А	0.9800
N1—C1	1.3924 (17)	С5—Н5В	0.9800
N1—H1A	0.8800	C5—H5C	0.9800
N2—C6	1.3304 (17)	C7—C8	1.385 (2)
N2—C7	1.4238 (17)	C7—C12	1.389 (2)
N2—H2A	0.8800	C8—C9	1.388 (2)
N3—C12	1.4634 (19)	C8—H8A	0.9500
C1—C2	1.5266 (19)	C9—C10	1.389 (2)
C2—C3	1.530 (2)	С9—Н9А	0.9500
C2—C4	1.535 (2)	C10-C11	1.372 (2)
C2—C5	1.539 (2)	C10—H10A	0.9500
С3—НЗА	0.9800	C11—C12	1.388 (2)
С3—Н3В	0.9800	C11—H11A	0.9500
C6—N1—C1	127.08 (11)	H4B—C4—H4C	109.5
C6—N1—H1A	116.5	С2—С5—Н5А	109.5

C1—N1—H1A	116.5	С2—С5—Н5В	109.5
C6—N2—C7	122.22 (12)	Н5А—С5—Н5В	109.5
C6—N2—H2A	118.9	С2—С5—Н5С	109.5
C7—N2—H2A	118.9	H5A—C5—H5C	109.5
O3—N3—O2	124.13 (15)	H5B—C5—H5C	109.5
O3—N3—C12	118.38 (14)	N2—C6—N1	116.64 (12)
O2—N3—C12	117.49 (15)	N2—C6—S1	123.01 (10)
01—C1—N1	121.25 (13)	N1—C6—S1	120.35 (10)
O1—C1—C2	122.81 (12)	C8—C7—C12	118.18 (13)
N1—C1—C2	115.93 (12)	C8—C7—N2	119.87 (13)
C1—C2—C3	108.19 (12)	C12—C7—N2	121.95 (13)
C1—C2—C4	110.48 (11)	C7—C8—C9	120.52 (14)
C3—C2—C4	108.92 (12)	С7—С8—Н8А	119.7
C1—C2—C5	109.15 (12)	С9—С8—Н8А	119.7
C3—C2—C5	109.38 (13)	C8—C9—C10	120.03 (14)
C4—C2—C5	110.68 (12)	С8—С9—Н9А	120.0
С2—С3—НЗА	109.5	С10—С9—Н9А	120.0
C2—C3—H3B	109.5	C11—C10—C9	120.38 (14)
НЗА—СЗ—НЗВ	109.5	C11—C10—H10A	119.8
С2—С3—Н3С	109.5	C9—C10—H10A	119.8
НЗА—СЗ—НЗС	109.5	C10-C11-C12	118.91 (14)
НЗВ—СЗ—НЗС	109.5	C10-C11-H11A	120.5
C2—C4—H4A	109.5	C12-C11-H11A	120.5
C2—C4—H4B	109.5	C11—C12—C7	121.95 (14)
H4A—C4—H4B	109.5	C11—C12—N3	118.23 (13)
C2—C4—H4C	109.5	C7—C12—N3	119.81 (13)
H4A—C4—H4C	109.5		
C6—N1—C1—O1	-6.1 (2)	N2—C7—C8—C9	-179.64 (13)
C6—N1—C1—C2	174.25 (12)	C7—C8—C9—C10	0.8 (2)
O1—C1—C2—C3	-1.98 (19)	C8—C9—C10—C11	0.2 (2)
N1—C1—C2—C3	177.68 (12)	C9—C10—C11—C12	-1.4 (2)
O1—C1—C2—C4	-121.13 (15)	C10-C11-C12-C7	1.7 (2)
N1-C1-C2-C4	58.53 (16)	C10-C11-C12-N3	-179.36 (14)
O1—C1—C2—C5	116.95 (15)	C8—C7—C12—C11	-0.8 (2)
N1—C1—C2—C5	-63.38 (15)	N2-C7-C12-C11	178.37 (13)
C7—N2—C6—N1	-176.23 (12)	C8—C7—C12—N3	-179.70 (13)
C7—N2—C6—S1	4.82 (19)	N2-C7-C12-N3	-0.6 (2)
C1—N1—C6—N2	1.4 (2)	O3—N3—C12—C11	140.14 (17)
C1—N1—C6—S1	-179.60 (10)	O2—N3—C12—C11	-40.3 (2)
C6—N2—C7—C8	73.24 (18)	O3—N3—C12—C7	-40.9 (2)
C6—N2—C7—C12	-105.88 (16)	O2—N3—C12—C7	138.65 (17)
C12—C7—C8—C9	-0.5 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H2A···O1	0.88	1.90	2.5953 (16)	134
N1—H1A···S1 ⁱ	0.88	2.59	3.4614 (12)	171

supplementary materials

C4—H4B…S1 ⁱ	0.98	2.75	3.6486 (18)	153
C5—H5C···S1 ⁱ	0.98	2.84	3.7121 (18)	149
Symmetry codes: (i) $-x+2, -y, -z+2$.				

